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A theoretical study is made of the global nonlinear growth or decay, in space and 
time, of an unsteady non-neutrB1 disturbance/wavepacket when a time-dependent 
nonlinear viscous critical layer is present. The basic flow considered is a steady 
quasiparallel channel flow, boundary layer or liquid-layer flow a t  high Reynolds 
number. The unsteadiness with regard to the critical layer shows itself less in the in- 
ternal dynamics than in the relatively slow movement of the layer across the flow, 
the temporal and spatial rate of movement discussed being sufficient to affect the 
nonlinear viscous balance in the layer. This greatly reduces the mean-flow distortions 
produced. The disturbance amplitude, in contrast, responds nonlinearly on faster 
time- and space-scales, both inside and outside the critical layer. These slower- and 
faster-scale properties inside the critical layer and outside, i.e. globally, are coupled 
together in general. The work addresses first the structure and nonlinear evolution 
equations for the growing or decaying free disturbance and the critical layer. But 
preliminary analysis in special cases suggests, among other things, the significant 
result that previous nonlinear studies baaed on quasineutral assumptions give 
unstable subcritical threshold amplitudes, above which increasingly fast disturbance 
growth takes place globally. 

1. Introduction 
Our concern here is with the nonlinear growth or decay, in time and space, of an 

initially small disturbance to a given parallel or almost parallel flow at high Reynolds 
number. At such Reynolds numbers the critical layer, where the basic flow speed 
coincides with the local effective wavespeed, can play a vital role in determining the 
behaviour of the disturbance, particularly when nonlinearity exerts a significant 
influence. The effects of increased nonlinearity as the disturbance size increases are 
felt primarily within the critical layer itself, which gradually undergoes a change in 
character. There have been many theoretical studies made of the properties of 
nonlinear critical layers (0.g. Benney & Bergeron 1869; Davis 1969; Haberman 1972, 
1976; Brown & Stewartson 1978,1980; Smith & Bodonyi 1982a,b; Bodonyi, Smith 
& Gajjar 1983), while Stewartson (1981) has given an interesting review of many 
aspects of the subject. To the best of our knowledge, however, most theoretical efforts 
so far (apart from purely inviscid theory, as noted later) have been focused on 
disturbances that are neutral travelling waves outside of the critical layer, with 
non-neutral states of growth or decay having been considered only with respect to 
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the motion within the critical layer. This amounts to an assumption or restriction 
that the critical layer isJixed. 

In this paper the aim is to remove that restriction, for a fluid of small but non-zero 
viscosity, in order to discuss theoretically the temporal-spatial growth or decay of 
the disturbance amplitude globally throughout the whole Jlowjield, not solely inside the 
critical layer. It would seem that such a discussion is almost certainly more relevant 
to the behaviour of the unsteady disturbances observed experimentally in boundary 
layers, channel flows and liquid layers for instance. The study is also of interest as 
a test on the tentative suggestions of Smith & Bodonyi ( 1 9 8 2 ~ )  and Bodonyi et al. 
(1983), which are based on a quasineutral assumption of only very gradual growth 
indeed. T h y  suggest formally that a very slowly increasing disturbance amplitude 
can lead to amplitude-dependent instabilities occurring with shortened wavelengths, 
enhanced wavespeeds and (hence) movement of the critical layer, and that, in line 
with Benney 6 Bergeron’s (1969) suggestions, this may be related ultimately to the 
shedding of vorticity across and out of a disturbed boundary layer. A similar 
approach for three-dimensional disturbances suggests (Smith & Bodonyi 19823) 
amplitude-dependent instabilities arising in Hagen-Poiseuille flow. So the evolution 
of a nonlinear disturbance or wavepacket, rather than the succession of nonlinear 
neutral states considered previously, is our concern. Associated with the space-time 
evolution of the disturbance through the flowfield, the effects of a moving critical layer 
have to be taken into account, and these prove to be of some consequence, more so 
in some ways than unsteady effects confined within the critical layer. For, as the 
critical layer is relatively thin, its actual movement across the flow can produce more 
change in the internal flow properties than does the inherent unsteadiness of the 
disturbance velocity. In  addition, a relatively slow movement of the critical layer 
position is found (below) to be accompanied by a much faster temporal and spatial 
response in the typical disturbance amplitude, inside and outside the critical layer. 
The study below concentrates on the (upper-branch) structure, governing equations 
and certain preliminary properties of both the non-stationary critical layer and the 
time-dependent amplitude. 

Section 2 discusses the basic principles involved when a disturbance is ‘unsteady’, 
i.e. non-neutral, growing or decaying in time and space, in the presence of a nonlinear 
critical layer. The importance of even slight critical-layer movement is confirmed, 
and leads to a rather general equation describing the behaviour of the time-dependent 
nonlinear critical layer: although, to be sure, certain important elements of the 
unsteady theory here can be found in the interesting works by Dickinson (1970), 
Benney & Maslowe (1975), BQland (1978), Stewartson (1981), Cowley (1981) and 
Benney (1983) and others, largely for inviscid fluids. The multiple scales introduced 
in $2 are supplemented in $3, where the specific contexts of the attached boundary 
layer, channel flow and liquid-layer flow are considered in turn, and the faster-scale 
response of the amplitude becomes evident. As a result a set of coupled nonlinear 
evolutionary equations, controlling the amplitude and effective wavespeed or group 
velocity of a wave packet, is derived for the motion inside and outside the critical 
layer. Section 4 describes the solution in the special case of fixed-frequency disturb- 
ances. These exhibit a subcritical threshold phenomenon whereby initial disturbances 
of amplitude above/below the nonlinear threshold value amplify/decay nonlinearly 
at later times, further downstream. In 55 limiting analytical solutions are considered 
for the time-dependent nonlinear critical-layer problem itself, which otherwise 
requires a numerical treatment. One general property is that no significant jump in 
the mean vorticity is possible across the moving critical layer, so that (as a referee 
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noted) no large mean-flow disturbances are induced outside, not aa for fixed critical 
layers. Finally a brief summary is given in $6. Only two-dimensional disturbances 
are examined, for an incompressible fluid of constant density p, and kinematic vis- 
cosity v,. The Reynolds number is written Re = u, 1, vzl and is assumed to be 
asymptotically large. Concerning the practical value of this assumption, see Smith, 
Papageorgiou t Elliott's (1984) application of the asymptotic theory to hite(even 
subcritical)-Re properties, and the close comparisons with experiments on Tollmien- 
Schlichting disturbances in Smith (1979) ; we note in addition that, even though terms 
with small inverse powers of Re may be involved below, the practical value of the 
asymptotic results depends to a large extent also on the coefficients multiplying those 
terms, and these coefficients are not known in advance. Here u, and 1, are the typical 
speed and lengthscale of the basic motion, 1, being the streamwise development scale 
of the boundary layer, the thickness of the channel or the width of the liquid layer. 
The time, Cartesian coordinates, associated velocity components and pressure are 
1, u;l t, Z,(x, y), u,(u, v) and p, u& p, the stream function being 1, u, $. In  the cases 
considered the basic flow can be taken to be parallel along the x-axis to the order 
of working necessary. 

2. General arguments on unsteady nonlinear critical layers 
It seems appropriate to start with the general argument leading to the central 

time-dependent critical-layer problem below without reference to a specific flow as 
yet. This delays the use of expansions (necessary eventually) in somewhat strange 
powers of the Reynolds number, and some of the initial scalings involved can be 
identified more readily with the classical scalings (e.g. Reid 1965). The formal 
expansions for an attached boundary layer and channel and liquid-layer flows in 
particular will be verified in the later sections. 

To allow for the slow spatial and temporal variations we introduce the multiple-scales 
replacement of a/& and a/at by 

a 

3% ' J  a a 
-+ at -/?-+P'-+ ax .... 

Here a is the wavenumber, /? = ac is the frequency and c is the wavespeed of the 
disturbance/non-simple-wave solutions, which are periodic in X but not in the slow 
variables x = X 2 / P )  and t = T , / P ,  where the scales f ( s )  and r(t) are to be 
determined. 

Consider first, then, the steady problem for injnitesiml disturbances. The majority 
of the motion consists of the basic flow (u, v ,p)  = (uB, 0, pB) together with the small 
disturbances (uo, vo, po) proportional to eix. This holds even in the neighbourhood 
of the Stokes wall layer and the critical layer, which are assumed to be asymptotically 
distinct but with the critical layer still lying close to the wall. Just outside the critical 
layer,.where the basic flow is comparable to the wavespeed c, the flow expansions 
take the form 

(2.2) 

u - hc* P+$cc2*A2 P+s(uo+c*ul+ ."), 

v - a&fY*c*(v,+c*v,+ ...), 
p - sc*(po+c*p,+ ...). 
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Here c* = a;' y defines the boundary-layer coordinate and c = co c*, a = a,a,, 
where the unknown orderings c*, a*, a* depend on the Reynolds number, whereas 
c,,,ao are O(1). Also S is the infinitesimal disturbance size and A is the local skin 
friction. If the local profile curvature A, is non-zero then a logarithmic singularity 
in u, is induced usually and requires a thin viscous critical layer of thickness 
a*(a* a: Re)-; to smooth out the irregularity. The familiar phase shift of --x in the 
logarithm below the critical layer results. The Stokes layer of thickness of order 
a&* c* 6% Re)* produces a phase shift in the major disturbance and provides the 
necessary displacement condition to match with the critical-layer shift. This fixes 
effectively the Reynolds-number dependence of the wavespeed and wavenumber, i.e. 

(2.3) c = O[(a, a: Re)-+]. 

Additional relations dependent on the particular basic flow then determine the 
neutrally stable modes explicitly. 

The above description holds for infinitesimal disturbances. As the disturbance size 
is increased strongly nonlinear interactions fist come into play inside the critical 
layer, and streamwise momentum balances show that the critical-layer properties are 
altered significantly when S takes the critical value 

Sc = 0 [(a* Re a:)-$] 
c* 

The governing equations in that case are those derived by Haberman (1972). Outside 
the critical layer the main change produced is that the jump in the streamwise 
velocity is no longer monochromatic, because higher harmonics are induced, and in 
particular the phase shift q5 depends on the disturbance size. Only for 6 < 6, are 
classical linear properties recovered, with Q + -n. 

Let us suppose now that unsteadiness is also present, in the sense that non-neutral 
conditions hold and introduce relatively slow time-dependent variations globally in 
the disturbance amplitude A,, allowing growing or decaying nonlinear modes to be 
accommodated. Therefore in the development of the critical layer the wavespeed and 
wavenumber become slowly varying. The time dependence first becomes important 
inside the critical layer. Since the critical layer is defined by 

(2.5) 

where yc = O(a, c) determines the critical-layer position and is dependent on the slow 
variables X, and T,, we have in addition to (2.1) 

y = yc + a&* a: Re)-i Y ,  

The terms in a/aY reflect the movement of the critical layer itself and are much larger 
than the basic slow variations a/aX, and a / a T ,  here, simply in view of the thinness 
of the critical layer. Previous studies on unsteady nonlinear critical layers have 
concentrated mostly on the case where the a/aY contributions in (2.6) are negligible. 
With a moving critical layer, however, these terms dominate and cannot be 
neglected. Similar terms appear in Cowley's (1981) mainly inviscid analysis of moving 
critical layers (as a referee has pointed out; see also below), although in a somewhat 
different context and in which the basic flow is also time-dependent. 
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An unsteady-viscoueinertial balance now gives the appropriate scalings when 
these new effects become significant : namely when 

The inclusion of nonlinearity and time dependence modifies the Haberman equation, 
and instead the vorticity c* now satisfies the equation 

in normalized form. Here, from the inertial forces in the Navier-Stokes equations, 
with the transformations (2.6), 

p Oc (2 -+co%)/Ao, ax, 

since the basic flow uB - c and (a/aT,  + c, a/aX,) yc = (a /aT ,  +c, a/aX,) c,(dy,/dc,), to 
leading order. The case p = 0 reproduces the steady Haberman equation, and the 
parameter yc is the Haberman parameter gauging viscous against inviscid forces as 
used in Smith and Bodonyi (1982a), except that now it is slowly varying. The extra 
term p(1 -ac*/aY*) arises because of the slow variations present, which force the 
critical layer to move. Again, c* satisfies the same boundary conditions as in the 
steady case, and the leading-order properties outside the critical layer remain largely 
unaltered. 

It should be emphasized that so far the slow temporal and spatial variations (T,, X,) 
appear only parametrically in the time-dependent, critical-layer equation (2.8). The 
properties of this time-dependent equation strongly influence the global amplitude 
dependence, however, via the velocity jump, although the explicit slow-time and 
slow-space variations of the amplitude require the examination in 93 below of the 
higher-order terms, both inside and outside the critical layer. Again, the slow 
variations in time and space chosen above are those which first significantly alter the 
steady Haberman problem. It can be expected, though, that the limiting solutions 
of this time-dependent problem for p large or small will indicate what the different 
structures are for alternative spatial and temporal variations, both weaker and 
stronger. Finally here, we consider whether faster temporal variations but confined 
within the critical layer can be admitted also, formally, much like those considered 
by Dickinson (1970), Warn & Warn (1978), Stewartson (1978, 1981) among others. 
Equation (2.8) is then modified by inclusion of an extra contribution ac*/aT* on the 
left-hand side, giving the generalized form 

ac* ac* ac* a y *  
aT* ax* a Y* a y*2 , -+p( 1 -g)+ Y*-+sinX* - = yc- (2.9) 

where t = ~$013 ReaT* defines T*. There is a dilemma here, however, since for 
consistency A, and the wavespeed must be independent of T* and indeed, we should 
emphasize, all T* dependence is assumed negligible outside the critical layer, for I Y* 1 
large. This stringent assumption seems necessary in the present contexts because the 
T* dependence is a relatively fast one, so fast that its presence globally, outside the 
critical layer, would negate the assumed near-neutral form of solutions there and alter 
the structure set out above (unlike in Stewartson’s (1981) geophysical examples, for 
instance). The global presence of such a fast scale therefore forces a rather more 
involved unsteady flow, a possibility which we mostly leave aside for now. We note 
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that in (2.9) the casep = 0 retrieves Stewartson’s (1981) equation (see also Hickernell 
1984; Stewartson 1978). Although the time-dependent version (2.9) for a moving 
nonlinear viscous critical layer is clearly important as far as an initial-value problem 
(and instability) within the critical layer itself is concerned, our interest is as much 
in the global time dependence (and instability) of the flow. This alone, as we shall see, 
has some significant facets to it. It is therefore tempting to take a/aT* = 0 below, 
with unsteadiness then still significant because of the time dependence present in the 
global and critical-layer flow through the factors p and yc. But the following analysis 
could be modified ultimately to include the faster a/aT* effect, i.e. to consider the 
dynamics both inside and outside the critical layer, with or without the rather strict 
assumption above about the extent of the T* dependence in the present contexts: 
see an example in $5.1. 

3. The boundary layer, channel flow and liquid-layer flow 
With the general arguments for time-dependent moving nonlinear critical layers 

established in $2, we turn to three specific examples of wide concern: the boundary 
layer, channel flow and liquid-layer flow. The main novel parts of the nonlinear 
non-neutral disturbance structures for the three basic flows are set out in 583.1-3.3. 
An extra common feature here is that the disturbance amplitude must usually vary 
also on temporal and spatial scales that, although still slow, are faster than the time- 
and space-scales of the critical-layer movement described in $2. These extra scales 
turn out to be most significant with regard to the nonlinear development of the dis- 
turbance from an initially small state. 

3.1. The boundary layer 
In the five-zoned account (Smith & Bodonyi 1982a) of the disturbance structure 
necessary here, the major changes due to unsteadiness arise near the wall, in the thin 
predominantly inviscid zone (IZ) surrounding the critical layer and within the thinner 
nonlinear critical layer (CL) itself (see figure la).  In IZ we have now the expansions, 
implied mainly by the time- and space-scales introduced above, with cr* = e6 = Re-+, 
a* = c5, and c* = E ,  

u = €A 9+ €PA, P + diP + B U  MF + E Y u I 1 )  + €Y,ii(2) + ..., 
2, = €Yfi(O) + EY@ + €Yfi(2) + . . . , 
p = &$O’ + &$l) + &p + .... 

( 3 . 1 ~ )  

(3.lb) 

( 3 . 1 ~ )  

Here the mean-flow correction uMF is independent of 2, and the constants h and A, 
are the skin friction and curvature of the basic boundary layer near the wall, 
A > 0, A, < 0, for an inflection-free boundary layer under a favourable pressure 
gradient, while el2 = Rep1 4 1 and (x, y, t )  = ( ~ ~ 9 ,  c7 8, c4?) with 2, P and f of order 
unity. For other notation see Smith & Bodonyi ( 1 9 8 2 ~ ) .  The slower spatial and 
temporal scales x = E ~ ( E - ~ X , )  = e5(e-2X,) and t = e4(e-17) = ~ ~ ( s - 4 7 3  are also 
present, so that 

( 3 . 2 ~ )  

(3.2b) 
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Y Outer potential 
flow 

4 €5 

lnviscid rotational 

- €5 - 
Z1 (rotational core-flow) 

d - 1  

z3(cL)= 62 

X 

FIQURE 1 .  Diagrams of the nonlinearly disturbed flow structure: (a )  for an attached boundary layer 
as described in 83.1 (see also Bodonyi et aZ. 1983); (b)  for channel flow as in $3.2, for a symmetric 
basic motion. In (a)  Re = e-l2 and in ( b )  Re = O1. 

for an underlying but varying wavespeed c,. Hence the fundamental disturbance in 
(3.1 a-c)  has the form 

d o )  = ~ A A ,  cos 8, $0)  = 2a, AA, P sin 8, $ 0 )  = 2p, cos 8, (3 .3)  

satisfying the tangential flow condition as the wall is approached, with A ,  and P, 
dependent on X,, T,, X, and T,, and (like the effective wavenumber a, and wavespeed 
c, = Po a;l) unknown. It is necessary for consistency, however, that a,, c, and hence 
the frequency Po = aoco remain independent of XI and T,, depending instead on X, 
and T, principally. In  other words, physically, a slow variation in a,,c, and Po, 
corresponding to a slow movement of the critical layer on the X, and T, scales, tends 
to force a much faster-scale (X , ,T , )  response in the global behaviour of the 
disturbance amplitude A, itself. In (3 .3)  the argument 0 satisfies 

ae ae 
- a2 = ao(X2, qL 3 = -/3,(X2, q), ( 3 . 4 ~ )  

to our order of working, and so we have a distorted travelling wave. For compatibility 
( 3 . 4 ~ )  then requires that a, and /3, must be related by 

(3 .4b)  

3 FLM 157 
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In addition the streamwise momentum balance yields the requirement 

(3.4c) 

because of (3.3) ; while the potential flow holding outside the boundary layer forces 
the classical pressurdisplacement relation 

J .  Gujjur and F. T. Smith 

AA, P o  = “0 4, 

Po = a, A ,  
to hold. So from ( 3 . 4 M )  we have the equations 

(3.4d) 

(3.4e) 

with a, = hc,, I 
governing the slow variation of a, and c ,  in time and space. As expected, the group 
velocity cg = aPo/aa, = 2c, controls the group propagation, at twice the local 
wavespeed. 

It is significant also that if disturbances of $xed frequency la, were under 
consideration this would correspond immediately to a fixed wavenumber a. and a 
fixed wavespeed c,, since a, = p’ghi and co = P g A  2 from (3.4e). Our main concern 
here, however, is with non-uniform conditions of frequency, wavespeed and wave- 
number. 

A t  the next order, from the NavierStokes equations, (3.1 u-c) yield the solution 

1 -1 

with a p / a F  = 0, (3 .5b)  

the function 4 being independent of and as in Smith & Bodonyi ( 1 9 8 2 ~ )  and 
6 = B-A-’c,. Here the influences of the profile curvature A, and of the first slow 
scales X, and first take effect; the scales are selected for that reason. Also the 
logarithm in ( 3 . 5 ~ )  is appropriate to P > A-lc, above the critical layer. Beneath it 
the replacement 

is necessary in view of the (unknown) phase shift $ across the critical layer (see below) 
at  x A-lc, together with a replacement for the function ci akin to that in Smith 
& Bodonyi ( 1 9 8 2 ~ ) .  So the inviscid displacement effect produced near the wall as 
p+O+ is O(&, given by B = O +  ). This matches the classical viscous wall-layer 
displacement 

(In() sinO+(lnIEI) sinO+$ coso ( B  < h-lc,) (3.5c) 

2 4  
~ ( B = o + )  = ~ ? ? [ - - ~ ~ s i n ( ~ + ~ - n ) + ~ ( € ) l ,  ca (3.6) 

provided that, from the cose components of (3.5u-c) and (3.6), the phase balance 

holds; the other components play a passive role at  this stage. Equation (3.7) then 
leads ultimately to the nonlinear amplitude equation for A,. Note that in a neutral 
state the left-hand side of (3.7) is zero and the right-hand side fixes the steady neutral 
amplitude via the phase shift. Again, for infinitesimal disturbances, where $ = --n, 
(3.7) determines the small growth rate holding across the majority of the neutral curve 
at large Reynolds numbers. 
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Similar reasoning applies to the first appearance of the still slower scales X, and 

in IZ, with B independent of 8. There are two other sources of forcing invoked a t  
this stage. One is from the pressure-displacement interaction, which requires that 

el aao B=--sin8. 
a: ax, 

The other is from a phase shift proportional to $, in B across CL: see below. There 
is no corresponding viscous displacement from the wall layer, however, from (3.6), 
so that the constraint @@I( 8 = O +  ) = 0 holds. Consequently ( 3 . 8 ~ )  leads to the result 

(3.8b) 

in view of ( 3 . 4 4 .  
The slower scales X, and T, therefore seem to play a fairly minor role in IZ, at first 

sight. Their importance is enhanced within the time-dependent critical layer CL, by 
contrast. In  CL, where = A-lc,+&Y with Y of order unity and the flowspeed and 
effective wavespeed nearly coincide, the flow solution has the form 

u = ec, + &AY + + 2&AA, cos 8 
+ e ~ C ( 2 ) Y + e ~ ( l n ~ ) C ( S ) A o  cos8+eYU1+e~U2+ ..., ( 3 . 9 4  

v = 2eY.01, A ,  co sin 8 + 2s5a, AAo Y sin 8 
+ &Y4) + eYC(5) + es(1n e) 0 6 )  Y sin 8 + €6 V, + e?J" V, + . . . , (3.9b) 

(3.9c) 

where On), n 2 1,  are functions independent of Y and are determined directly by 
matching with the solution in IZ. For example, C(l) = A, ci A-2 and C(,) = 2A, co A-l. 
More significantly, since the critical layer is not stationary here, the multiple scaling 
becomes 

p = 2&4 coS 8 + ,Yc(7) + &c@) + €5< + + . . . , 

a a  -+e-4 a - ( 7 2 &+&)+...I, 
at [ ax a? c,,+e-+ei -- - 

( 3 . 1 0 ~ )  

(3.10b) 

together with a/ay+e*a/i3Y. So, as noted before, time dependence is dominated by 
the induced Y-derivative in CL. 

In CL the Navier-Stokes equations subject to (3.9a-c) and (3.10a,b) reduce to the 
controlling equations for U,, V, and Pl: 

(3.1 1 a)  

(3.11b) au1 ap, awl 
ay ai. a y 2 )  

+2a,A,c ,  sinO-+AK = --+- 

(3.1 1 c) 

3-2 
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Here K = A-lc, fixes the critical-layer position and is an unknown function of X, and 
T,. Hence the vorticity equation (2.8) is obtained, from the Y-derivative of (3.11b) 
with (3.11u), with X*,c* and Y* in (2.8) defined by 

and , yc = Ai(2co A,)-ta,' 
aco/aq + c, aco/ax, 

,uG 
2Aa, co A, 

(3.12b) 

in the present case. We need also the next-order terms within CL, however, to 
complete the determination of the disturbance. These are governed by the equation 

( 3 . 1 2 ~ )  

for the vorticity contribution 6, = aU,/aY. I n  normalized form this becomes 

(3.12d) 

y2 = A2A;' c;, ail and y, = 2A2(2~A0)4. The matching condi- 

c,*-o(&) as ~*+kOo,  (3.12e) 

and the solution of (3.12d, e) is required to fix the secondary phase shift q52, where 
q52 is the jump in the velocity, i.e. in the integral of [: with respect to Y*, as far as 
the sin 8 component only is concerned. 

The phase shift q5 is determined by the solution of (2.8) with the asymptotic 
constants involving an unknown vorticity jump 2(H+ - H - ) ,  

c* - Y*+2H'+O( Y*-l), ( 3 . 1 3 ~ )  

where 5, = 2 4  c: 
tion here is 

followed by integration to  give 

U* - 9'*2+2Hf Y*+cos8 In1 Y*J + U*,, - (3.13b) 

where [* = aU*/aY*. Here q5 is the sin0 component of the velocity jump: 
22 

q 5 = c 1 S  (U:-U?)sinOdO. 
0 

(3.14) 

Thus g5 (and hence q52) depends on the values of ,u and yc, which act as quasi-steady 
parameters in the governing equation (2.8) itself (and in (3.12d)). With $(p, yc)  and 
q5,(,u,yc) determined, the spatial and temporal growth or decay of the amplitude A, 
follows from (3.7) with (3.4c,d), i.e. 

( 3 . 1 5 ~ )  

where the negative constant q5s = -At 2-8( - AJ1 cs3 is the value of the phase shift 
q5 in a neutral steady state with quasi-wavespeed c, +cs (constant) : whether such a 
state is achieved or not remains to be seen. The nonlinearity in ( 3 . 1 5 ~ )  is due in 
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particular to the dependence of yc on A, (see e.g. $4 below). Unsteadiness appears 
explicitly in the left-hand side of ( 3 . 1 5 ~ )  and implicitly through ,u in the right-hand 
side. In  addition to ( 3 . 1 5 ~ )  the slower scale behaviour of A,(X,, T,, X,, T,) is governed 
bs 

a 
-(coA,)+ 
ax2 

from (3 .8b) ,  and by the slow-scale response of co(X,,  T,) given by 

(3.15b) 

(3.15~) 

from (3.4e). In (3.15a) a steady neutral state, if i t  is attainable (see §4), is achieved 
when the spatial end temporal dependence decay to zero, i.e. (a/aX,,a/aT,, 
a/aX,,a/aT,)+O: then ,u+O and co+c,. 

The terms in the left-hand side of ( 3 . 1 5 ~ )  are identical to those obtained by Benney 
& Maslowe (1975) in their study of slowly varying nonlinear waves in the presence 
of critical layers (see also Stewartson & Stuart 1971). 

The above arguments may possibly be generalized to recover (2.9) with the scalings 
discussed in $2,  at least provided the T* dependence can be suppressed outside the 
critical layer, as pointed out earlier. See also 55.1. 

3.2. Channel $ow 
The structure of a disturbed flow with a nonlinear critical layer here involves 
primarily the long lengthscale 5 = O(Reif) along the channel and four zones (21-24) 
laterally, the channel being given by -d  4 y 6 d for all 2 and the basic channel flow 
by a general symmetric profile U = u B ( y )  with 8 = 0, F +  constant oc Re-’ x in effect 
(see figure l b ) .  Here uB(y)  - h ( y + d ) + h , ( y + d ) ,  near the lower wall y = -d, with h 
positive but A, negative. An example is plane Poiseuille flow. 

Zone 21 occupies the majority of the channel -d  < y < d ,  and the flow solution 
there has the form 

In addition, the multiple scales 

a l l a  
( 3 . 1 7 ~ )  -+Ear ,  - + s3 - + E s - + . . . , a a 

ax ax ax, ax, 
a a a , a  
at 0 ,ax a q  a% 
-+-e3a c -+e5-+e3 -+ .. (3.17 b )  

apply; and now = Re-’ < 1. Also, CT* = 1, a* = E and c* = s2. In  ( 3 . 1 6 ~ )  uMF is 
independent of X. The Navier-Stokes equations then yield the successive solutions 

(3.18a, b) 

( 3 . 1 8 ~ )  



64 J .  Cajjar and F.  T .  Smith 

V ,  = aOuB ~o’apod?l_.,coAoS+a u - a# 
and ax u; 0 Bax’ 

Y 

1-d uB dy 

(3.18d) 

(3.18f) 

where S = sin X, C e cos X. Here, as in $3.1, the fundamental wave, in (3.18u-c), 
is non-simple since a. and c, vary with both X ,  and T,. The other unknown functions 
arising, A,, poo, # ,p lo ,  G and p,,, depend on the faster scales X ,  and as well as X, 
and T,, and all but A, also vary with X. In the solution (3.18u-c) -A, is the inviscid 
displacement effect, while ( 3 . 1 8 ~ )  reflects the importance of the cross-channel 
pressure gradient produced by the curvature of that displacement. The time- and 
space-scales X, and T, above, which govern the critical-layer movement, are inferred 
from the general argument of $2, since in the present case c in (2.3) is O(e2). The faster 
scales X, and q on which the typical disturbance amplitude A, then reacts are 
induced in response to the traditional logarithmic singularity, below, due to the 
curvature A, of the basic flow. 

Next, zone 2 2  near the lower wall y = -d is a continuation of Z1, but it details 
the position of the critical layer (23). In 22, y = -d+s2y,  with P = O ( l ) ,  and the 
expansions 

u = €~hP+~,€4P+~~~0+€~ii~F+€~U1+€~?LU2+ ...) ( 3 . 1 9 ~ )  

v = €%,+€%,+€%,+..., (3.19b) 

p = €Yjio + &pl + &ji, + . . . ( 3 . 1 9 ~ )  

hold, with ZMF independent of x. Coupled with (3.17a,b) still, (3.19a-c) yield the 
solutions 

ii, = A,  AC, go = AFA, a, S ,  - ’Po = - c, A, AS ( 3 . 2 0 ~ )  

at leading order. These match with the forms in 21 and give tangential flow a t  the 
wall ( P+O + ) as required. Next we obtain 

ax 

ac; 
-2A,- 

followed by 

(3.20 c) 
aB 

t7,=--5i a -+-+-+c,-+a U - -[a - ” 0 )  
1 ( aji, ap, au0 aii, 

 ax ax, aT, ax, o ,ax 
again from the Navier-Stokes equations. Here f = AF-c,, po,jil and j i2 are in- 
dependent of 8, and Ci and B are further unknown displacement functions of 
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X, XI, q , X 2 ,  T,, .... Beneath the critical layer for 6 < 0 the replacement ( 3 . 5 ~ )  deals 
with the logarithmic contributions in (3.20b), with 4 again unknown and S and C 
replacing sine and C O S ~  now. There are also, as in $3.1, non-monochromatic jumps 
in the functions d and B due to 23 but not involving any C-contributions in CZ. 

Before addressing the nonlinear time-dependent critical layer 23 we note that the 
O(e4)-thick viscous wall layer 24 remains of classical linear form, and so produces the 
viscous displacement condition 

c(F++o+) = ey sin(~+in)+0(e2)] .  ( 3 . 2 1 ~ )  

Therefore the join between 22 and 24 requires the two relations 

1 co A t 
-x(aoj511 +$) - (".. co %) +ao co [d, - 2A2 $41 = - AA, (3) , (3.21 b )  

1 aT, 3x1 2CO 

-h 1 (a0$,, +%) - r'!+ c . 2 )  + a, c , [ ~ ,  - #,I = o 
(3.21 c )  

to be satisfied, as regards the all-important C-contributions. In  the above, goo and 
j5,, are the C-components of Po and p1 respectively, and $21,1il and 8, are the 
S-components of the functions P2, d and B above 2 3 ;  in fact ji, = Boo C ,  and the 
z-momentum balance in 2 2  gives the relation 

(C-'p 00 =)jjoo = Ac, A,. (3.21d) 

Below the critical layer 23,d1 is unchanged but 8, suffers a jump, given by #,, to be 
determined from the critical-layer properties. 

Along with (3.21 b-d), the relations 

jjo0 = a i A o I l ,  #ill = a~iZl+ao2)Il, i3A g,, = (a;&+ m) Il (3.22a,b,c) 
3x2 ax1 

also apply from the merging between 2 2  and 21, where 
0 

I1 = j-, U 3 Y )  dY (3.22 d )  

is a given positive constant. The required condition of antisymmetry about the 
channel centreline y = 0 has been used in 21 for the disturbance pressure. Again, 
compatibility (a2/& at = a2/at ax) requires that aao/aT, + a(ao co)/aX, = 0. So, com- 
bining this with (3.21d) and (3.22a), we obtain the results 

(3.22e) 

affecting the critical-layer movement. The group velocity cg = 3c0 is thrice the local 
quasi-wavespeed. 

Addressing finally the nonlinear time-dependent viscous critical layer 2 3 ,  wherein 
y = -d + e2A-lc, + e? Y ,  with Y of order unity, we have there the multiple scalings 
(3 .17a,b) ,  but supplemented by 

(3.23 a )  

(3.23b) 
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where once again the dependence on critical-layer movement is dominant. The flow 
solution in 2 3  has the form 

u = €2C, +€YAY + A,A-%; €4 + €YG0 + &(4+ + 2A, A-’c, Y )  
+e?(ii,+A, Y2)+&,+ ..., (3.24a) 

(3.24 b)  

(3.24 c )  

Substitution into the Navier-Stokes equations provides the successive governing 

2, = €W+ + €?Go + €%+ + “Yq, + €?GI + €YE, + . . . , 
p = € ~ p o + € q 7 1 + € ~ ~ z + . . . ,  PP 

where v “ ~  = -ao A-l ap, /aX.  

equations of continuity and z-momentum 

and 

aii a q  - az, ac, av“, 
oax ay Oax ax, ay 

a A+- - a -+-+- (3.25 a )  

(3.25 b)  

= O  (3.25 c )  

9(4,, v”,) = 0, (3.25d) 

where the operator 8 is defined by 

and @ = -2A,. The y-momentum balances simply give i3@n/i? Y = 0 for 0 < n < 4. 
Hence we obtain 

I B+ = aOcO A,S,  4, = A,AC, Go = AYA,a,S, 

(3.27) A54 = - + ~ h - ’ ~ c ~ A , a , S ,  
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and iii is independent of X and Y. The first non-simple problem in (3.25) is that for 
a, therefore, and takes exactly the form in (2.8) after the transformations 

y = (447 y*, 

x=x* 
are introduced in the Y-derivative of (3.25g). Here 

(3.28a, b )  

( 3 . 2 8 ~ )  

(3.28 d )  

and the far-field conditions (3.13a, b)  are retrieved. The second non-simple problem 
is for 2,. In  turn it acquires the form (3.12d), where now 

and the conditions (3.12e) again apply here. So 5* and 5; are responsible for the phase 
shifts q5 and 4, respectively across 23, which appear in (3.21 b,c). 

In  summary the unsteady nonlinear disturbance amplitude A, and the moving 
critical-layer position A-lc, are controlled by the equations 

ac0 aco - -+3c,- - 0, a q  ax, 
(cf. the set (3.15u-c)), where now 

c2 a -hao 
d = - 2A J L 2  > 0, q5s = (2a, co)t < 0, 

a A 2  

(3.29 a )  

(3.29 b )  

(3:29 C )  

(3.30) 

with a, given by (3.22e). Further comments are covered by those at the end of $3.1. 

3.3. Liquid-layer $ow 
We consider liquid-layer flow over an inclined plane, and take the plane to be inclined 
at an angle w* to the horizontal with w* = O(I2e-h) and s = l /R& tanw* = O(1) .  The 
disturbance structure then takes exactly the same form as in $3.2, the only difference 
being that the free-surface conditions lead to the eigenrelation 

hc, = a: 1 , -8  (3.22 e') 

instead of (3.224. See Gajjar (1984) for further details on the neutral case, i.e. without 
a moving critical layer. The fundamental problem (2.8) and the amplitude equations 
(3.29) remain unaltered. 

For steeper planes (w* Re-h), 8 = 0 effectively in (3.22e'). 
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4. The amplitude equation for fixed-frequency disturbances : the special 
case ,u = 0 

If we consider fixed-frequency disturbances, with Po = const., then as mentioned 
previously the eigerelations (3.4e) and (3.22e) imply that both c,  and a, are also 
constant and hence ,u = 0. The phase shift # occurring in the amplitude equations 
is then determined by solving the steady Haberman problem (here we address (2.8) 
rather than (2.9)). The properties of this are well known: $(A) is monotonic, with 
#+--x as A+O and $ oc -A-i for A B 1 (see e.g. Haberman 1972; Smith & Bodonyi 
1982 a). These properties come mainly from a numerical treatment. Qualitatively, 
however, they may be represented by a model with #(A)  given by 

where k, is a positive constant. If we consider A as a function of T, and z = X, - 
where cg is the group velocity, then ( 3 . 1 5 ~ )  and ( 3 . 2 9 ~ )  with (4.1) take the form 

cg, 

This integrates t o  give the implicit solution 

(4.2) 

where M(z)  (> 0) is an  arbitrary function of integration; the value 4, = --x 
corresponds to the linear neutral modes aon and con. 

If #, < -n, i.e. a, < a,,, then co < con and the initially small disturbance lies inside 
the linear neutral curve. The nonlinear solution is sketched in figure 2(a). It has the 
following behaviours as T, +. f co : 

A - e~p(-aT,(#,+x))I#,+-xI-2~'34~ as T,+-co, ( 4 . 4 ~ )  

governing its initial response; and 

A - exp ( - aT, 4,) as ++ co, (4.4b) 

which describes its ultimate form. Here (4.4u,b) imply that a mode that is initially 
small and linearly unstable will amplify, become nonlinear and then become 
unbounded at larger times (as TI + 00). 

On the other hand, if 4, > -x, corresponding to the linearly stable modes, we have 
the significant result that there is an  unstable subcritical equilibrium amplitude A,  
given by 4, = #(A, )  as T,+- co (see figure 2b). If the amplitude A is below A, then 
the disturbance amplitude decays to  zero as time T,  increases, whereas if A is above 
A, then A becomes unbounded, attaining the behaviour (4.46). 

The above conclusions happen to  agree (qualitatively only) with those from the 
weakly nonlinear stability theory of Stuart (1960) and Watson (1960) for smaller 
disturbances. 

Finally i t  is noted again that the above results are for the special case ,u = 0 only. 
For a moving critical layer ,u + 0, and the phase shift # is related in a much more 
complicated manner to A, and not necessarily monotonically as in the model problem 
above. Even a heuristic discussion of the amplitude equations and the implications 
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FIGURE 2. Sketch of the nonlinear solutions of the amplitude equations for the special case p = 0, 
with #(A) = -x/(l  +k,Ai) ;  see $4: (a) q5* < - x ,  corresponding to  linearly unstable disturbances; 
(b)  q5, > --A, for linearly stable disturbances, showing the nonlinear threshold phenomenon. 

for the neutral-stability curve would first require an explicit determination of the 
functional relation of # on A and this needs a full numerical solution of the problem 
(2.8). 

We therefore turn next to some limiting cases of (2.8). 

5. Preliminary properties of the time-dependent nonlinear critical-layer 
equation 

The properties of the nonlinear critical-layer equation when dominated by 
viscosity, nonlinearity or time dependence are dictated by the various limits ofp and 
ye, large or small, and we devote this section mostly to some preliminaries on these 
limiting solutions. 

First, however, an interesting general property concerning the mean-vorticity 
jump and the phase shift 4 is noted. Integrating (2.8) with respect to Y*, we obtain 

,u(Y*-C*)+ Y*U%.-@:.+sinX*U& = -Pz,+yc U&, (5.1) 

with the boundary conditions, for Y*+f 00, 

@* -~Y*3+H*Y*2+~osX*(Y*lnI  Y*l -Y*)+B*(X) Y*+G*(X)+o - ( :*I 
(5.2a) 

(5 .2b)  u* - +Y*2+2H* Y*+cosX* In1 Y*I+B*(X)+O 

cos x* 
c * w  Y*+2H'+- 

Y* ( 5 . 2 ~ )  

Integration of (5.1) with respect to X*, from X* = 0 to X* = 2n, and application of 
the boundary conditions therefore gives 

-4 /~7c (H+-H-)  = 0. (5.3) 
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A further integration of (5.1) with respect to Y* and then with respect to  X* over 
a period yields 

-pJo2" (B+-B-)dX+ (B+-B-)  s i n X d X  = 4nyc(H+-H-) ,  (5.4) 

after use again of (5.2a-c). Here (5.3) is a notable result, showing that for any non- 
zero p there is no vorticity jump across the critical layer. This is in contrast with the 
steady equation, where the mean vorticity jump is non-zero and is directly related to 
the phase shift $, as can be seen from (5.4) if p = 0. Instead, however, (5.4) deter- 
mines the mean-velocity jump in terms of the phase shift $. The above result also 
demonstrates that, concerning the mean-vorticity jump, a direct match with the 
steady solution is not possible. Nevertheless a connection with the steady solu- 
tions may be effected in all other main respects. For p small, with Y* = O ( l ) ,  to 
leading order the steady Haberman equation holds. For large Y* this gives 
[* - Y*+2H* + O ( l / Y * )  therefore, with H+ + H-.  Hence, writing 

6" 

c * =  Y*+[ , (Y*)+O - , ( :*I 
we have that [,,, satisfies 

- 

(5 .5)  

after substitution into (2 .8)  and integration with respect to X* from X *  = 0 to 
X* = 2n. Here (5.6) yields 

Crn = ho+h, e-py*. (5.7) 

If p > 0 the boundary conditions give h, = 2H- and 2H+ = h,+ h,, and if p .c 0 
they give h, = 2H+ and 2H- = h,+ h,. Hence an outer region wherein Y* = O ( l / p )  
is necessary, for p small, to adjust the vorticity jump back to  zero. This shows that 
the critical-layer time dependence spreads out like Y* - p-l above the critical layer 
i fp  > 0, but below i t  i fp  < 0. Formally, for boundary-layer flow, i fp  becomes as small 
as O(d) then the critical layer width e?Y*+O(e7),  and the time dependence then 
enters the outer inviscid zone 1Z. Also, (3.12b) and (3.10a,b) show that the slow 
variations now become O ( E - ~ ( E ~ X ~ ) )  and O(e-4(~2q) )  in space and time respectively. 
Similar comments apply to channel flow and liquid-layer flow, where if p+O(d) the 
X, and variations increase by a factor ei, and the time dependence again spreads 
out into the outer zone. 

We turn next to the limiting cases of (2 .8) .  A balance of the inertial and viscous 
terms suggests that viscous or time-dependent effects are significant when either 
yc 9 1 and Y* = O(yk), or y % 1 and Y* = Oh:) respectively. By contrast, if p and 
yc  are both small then nonlinearity is important. We consider the different limiting 
regimes in turn below, but only briefly for now, since i t  is felt that  subsequent 
numerical solutions of (2.8) would probably provide firmer evidence of the solution 
characteristics emerging in such limits. 

5.1. The linear viscous time-dependent critical layer: y c  9 1,  y 9 1 with y = O(y$)  

Let Y* = ~ $ 7  a n d p  = dii, where andji are O(1) .  The boundary conditions (5.2a-c) 
and (2 .8)  suggest an expansion of the form 
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Substitution in (2.8) gives the sequence of equations 

71 

-jic,,-e,,,+qclx* = --inX*, (5.9a) 

-Pck,q-ck,qT+qck,x* =-sinX*ck-l,q (k = 2 ? 3 , * * * ) -  (5.9b) 

Here if ji is zero the equations are identical with those discussed by Haberman and 
can be solved similarly. For non-zero ji analogous results for integral representations 
of the solutions of (5.9) are stated in the Appendix. 

Making use of the results in the Appendix, we find 

(5.10) 

where U, = fl at q = 0. The asymptotic expansion of Ul for large q now gives 

-ilog(qI+&csgn(q) 

where sgn(q) = + 1  for qZ0. In particular, (5.11) determines the leading-order 
velocity jump across the critical layer: 

$7:- U;- = -1m (eix x ) .  
The solution for c2 is given by 

(5.12) 

For ji + 0 (5.13) shows that there is no vorticity jump, as required by (5.3), but there 
is a jump in the mean velocity. 

Similarly 5, can be determined, and after some tedious but straightforward algebra 
we find that 

(5.14) 
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Then U, can be obtained by integration, and an asymptotic expansion for large 7 
yields a correction for the phase shift #. Hence, collecting the above results together, 
we find that 

t2  cos (jit2) -,iit sin (pP) -et3 
e dt+ .... 

t 2 + p  
fi = -7c++& (5.15) 

As , i i+O,  with 7 fixed, the above expressions reduce to those given by Haberman 
(1976), although, as discussed above, for any non-zero ji (2.8) gives no vorticity jump 
whereas the Haberman equation entails a discontinuity in the vorticity across the 
critical layer. This apparent inconsistency, however, can be identified with a closer 
examination of the mean-flow term in (5.13), which when rewritten is 

1 * F cos (t7 +$t2) + t sin (tr + fp t2) ]  -l t3  c=--j  2 0  p + t 2  e 3 dt. (5.16) 

For small ji 

Now 

,hence - -$ [e-IFtl- sgn (7) e-IP711. (5.17) 

For 171 a 1/ji we recover the zero vorticity jump, and for q large, but Iqj i l  < 1, c - -$[l -sgn (y)], giving a jump of !jny;l in the vorticity, as in the steady case. 
Thus for ji small an outer region, where 7 is O( l/ji), is necessary to adjust the vorticity 
jump to zero, and this agrees with the earlier comments concerning the emergence 
of the steady solution as p+O. 

If in the above we retain the T* dependence, i.e. we consider the linear solutions 
of the general unsteady equation (2.9), we obtain 

where = yh T*. In  particular, the velocity jump is given by 

U:- U;- = lim -Im { 2 eiX' ~o 'q~exp[ - (&+i$ ) ]du} .  (5.12') 
lr* 

As I r ] ~ l + 0 0  this reduces to the 'steady' limit discussed above. The results (5.12) 
and (5.12'), for our moving viscous critical layer, are the same as for a linear unsteady 
critical layer, as in Dickinson (1970), Stewartson (1981) and Hickernell (1984). The 
mean-flow term in C2, again with the T* dependence retained, is given by 

For ,ii = 0 this is the same as equation (3.29) of Stewartson (1981) (after allowing for 
misprints), and for 1 9 1,  fixed ji, this again retrieves the steady result. These 
latter results indicate that (2.9) together with the amplitude equations (3.15) and 
(3.29) is only valid provided in effect I Y*T*I 1 in the present contexts, a point 
made earlier in $2. The above expressions for the velocity jump and the mean flow 
in fact demonstrate that generally for I Y*T* I = O( 1)  the unsteady properties, with 
a/aT* + 0, need to be reconsidered both inside and outside the critical layer, which 
represents a rather more intricate general case. 
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5.2. The linear inviscid time-dependent critical 1ayer:p >> 1 , p  B yk 
Let Y* = p?f, and yc = 7,p.t but 7, 4 1 .  Again (2.8) with (5.2a-c) indicates 
expansions of the form 

I U* -p0,+puB01+p-i02+;tp-? lnp coax*+ ..., 

6* - pig, + g1 +p-q2 + . .. . 
Substitution into (2.8) yields the equations 

I 1 - PO{+  rltox* - 7, goqq = 0, 

- Lj+ fL* - 7, g1qq = 0, 

- P,<+ fgZx. - 7, g2qq = - sin x*P,;. 

(5.18) 

(5.19) 

If we write to = f +  goo, then goo satisfies - %,++ fgooxI - 7, gooqq = 0 and goo + const 
as f+f 00. For any non-zero 7c all non-trivial periodic solutions for goo become 
unbounded as I $ 1  + a, and thus go, = hnn, where h,, is some constant. Similarly, since 
g,+h,, (hi, constant) as f+ f co, = hlo. Then the solution for g2 can be obtained 
as in $5.1, and is given by 

where 9, is some function of X* which can be determined from the boundary 
conditions. For 7, + 0, then, we obtain the same velocity jump as before: 

0:- 0; = --7c sinX*, (5.21) 

together with a zero vorticity jump. The limit Y , + O ,  f+ k co is interesting and shows 
the existence of an outer region below the critical layer necessary to reduce the 
vorticity jump to zero. For if we change variables in (5.20) we have 

(5.22) 

and the major As f++ co there are no stationary points in the integrand of (5.22), 
contribution occurs at the endpoint t = 0, giving 3, = O(l/f) .  In contrast, as T+- 00 

the dominant contribution to (, comes from the stationary point at t = -Tyi ,  and 
this gives 

(5.23) pa = - Im { ei(x*+tqP) e ~ c  sn e 

If r* = X * + p  is fixed, I f l  9 1 and I f l  4 7~4, then (5.23) shows that there is a jump 
in the vorticity with 

gt-5; = Im (e'v'd-7c e-iin). 

If, however, 1 f l  >> 7;i then there is no difference in the mean vorticity above and 
below the critical layer. Hence for q* fixed there is an outer region below the critical 
layer, with Y* = O(,uy$) in terms of the original variables, in which vorticity diffusion 
is important. 
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5.3. The time-dependent nonlinear critical layer: p = 0(1), yc < 1 

To leading order, from (2 .8)  {* now satisfies 

for some p. Hence, formally at least, and in brief, 

(5.24) 

(5.25) 

where x = $Y*2+pX*+ cos X* is the basic stream function, and K ( x )  is an unknown 
function of x. The inviscid equation (5.24) is the same in essence as one of Cowley's 
(1981), who derives and discusses various results. 

The basic streamlines given by x = constant are sketched in figures 3(a ,b) .  For 
p 2 1 all the streamlines are open, whereas for p < 1 there is a train of distinct closed 
eddies with open streamlines in-between. With x fixed the integral in (5.25) is assumed 
to be periodic for all p. Certainly for p large the results of $5.2 in the limit T c + O  
are recovered ; and for p small the integral is again periodic. It is suggested tentatively 
that (for some p)  a viscous correction to (5.25), combined with a 2~periodicity 
requirement, may then determine the unknown vorticity function K ( x ) ,  and this 
gives for open streamlines 

(5.26) 

provided the integral exists (otherwise the integration range must be altered), where 
{*(x, 2) is defined by (5.25). For closed streamlines a singularity-free condition must 
hold, as in previous works. The working leading to the tentative criterion (5.26) for 
determining K ( x )  has some connection with Cowley's ( 1981) work, incidentally, as 
a referee has pointed out, although the latter study largely omits viscous effects. In 
fact for p = 0 (5.26) is consistent with the results of Haberman (1972) and Smith & 
Bodonyi ( 1 9 8 2 ~ )  for the limit yc+O. An explicit determination of the function K ( x )  
and more significantly of the velocity jump resulting from (5.25) is left unresolved 
here, however; it  is expected that future numerical results for the problem (2.8) will 
indicate more clearly what the trends are in this important regime. This regime is 
particularly interesting because it corresponds to  increased disturbance sizes. Likewise 
the regime of $5.2 is of physical importance since it is associated with faster timescales. 
Both regimes therefore merit further analytical and numerical study to gain more 
insight into the evolution and movement of time-dependent nonlinear critical layers. 

6. A brief summary 
We would emphasize the following points concerning the present study. 
( a )  In general the global space-time evolution of the disturbances considered is 

controlled by the nonlinear equations presented at the ends of $3.1 and 3.2. These 
form a perhaps novel set coupling the slow-scale dependence (X2, T,) (of the amplitude 
A and wavespeed co) non-linearly with the faster-scale dependence (XI, T,) (of the 
amplitude) and with the critical-layer movement (via the unknown nonlinear 
function p ( A )  and the resultant phase shift $ ( A ) ) .  It is necessary therefore that in 
general solutions of the time-dependent nonlinear critical-layer problem (2.8) be 
available, a task requiring numerical work. The limiting solutions in $5 then provide 
some preliminary comparisons for the numerical work which should be of interest. 

( b )  The special case of fixed-frequency disturbances discussed in $ 4  is encouraging 
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(4 

FIQURE 3. Sketch of the basic streamlines of x = iY*Z+pX* + COB X* = const; 
see85.3: ( a ) p 2 1 ; ( b ) p u l .  

for further research. It shows that the previous quasi-neutral estimates (e.g. Smith 
t Bodonyi 1982a) produce, in effect, subcritical threshold amplitudes for given 
frequencies. An amplitude initially below the threshold value subsequently decays, 
whereas nonlinear growth occurs for initial amplitudes above the threshold value. 
Moreover, the growth is unbounded in the present terms and can be analysed then, 
until a new structure subsequently comes into play. Whether similar fast growth can 
occur more generally for varying frequency, wavespeed and wavenumber, or not, 
remains to be seen from the general equations referred to in (a)  above, and this in 
turn supports the value of a numerical study of (2.8). If fast growth is induced, then 
the limits studied in $5 come back into play, and these should point ultimately to 
the next stage in the evolution of the growing disturbance, possibly bringing the full 
Euler equations into the final reckoning. 

( c )  The equation governing the effective local wavespeed of the wave packet is the 
inviscid Burger equation ( 3 . 1 5 ~ )  or ( 3 . 2 9 ~ ) .  Hence shocklike behaviour can take place, 
which may be significant. Moreover, since the wavespeed is real to leading order, 
another generalization of the global evolution equations can be made which adds a 
term oc a2A/ax2, to (4.2) for instance. This would increase the relevance of the theory 
to initial-value problems. 

(d )  We notice that the time-dependent governing equations, derived here from 
formal substitution into the Navier-Stokes equations, are contained also within the 
interacting boundary-layer framework of Smith et al. (1984), for finite Re. Thus the 
nonlinear instability features indicated analytically in this paper should be 
representable at finite Re within that framework. 

(e) Three-dimensional disturbances seem especially worthy of investigation along 
similar lines, to increase the possible relevance to observed instability processes in 
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boundary layers and channel flows for instance. Larger disturbances are also a major 
concern. Again, the structures and properties discussed here may be adapted to the 
study of non-parallel basic flows, which force added movement of the critical layer 
across the flow, and to stratified fluid flows. 

Thanks are due to the SERC for postgraduate support for J.G. and to the referees 
and Drs S. J. Cowley and T. J. Pedley for their interest and very helpful comments. 

Appendix 
Consider the equation 

where the right-hand side is some known periodic function of x. For periodic solutions 
the related homogeneous equation 

iw?lC-Cqq-pCq = 0 (A 2) 

has only solutions that become unbounded as q + 
to the forced equation (A 1) is given uniquely by 

co. Hence the bounded solution 

m a 

Y = z eiox J-, f(w, t)  S(7, t, w )  dt, 
w = - a  

where 
' /2w) dt e-iqt e-(t3/3w+it p (w < 0) ,  s(q, t ,  w )  = - 1 eta/aw+ipt~/20 

w 
t 

- - -- 1 et3/3w+ipt2/zw e-iqt e - ( t 3 / 3 W + i t  * p IZw) dt (w < 0). (A 3) 
w J- a 

The latter results are derived as in Haberman (1976). 
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